Monday, October 9, 2023

Water Vascular System

Water Vascular System 

The water-vascular system, which functions in the movement of tube feet, is a characteristic feature of echinoderms, and evidence of its existence has been found in even the oldest fossil forms. 

It comprises an internal hydraulic system of canals and reservoirs containing a watery fluid, the system consisting of a sieve plate, or madreporite, and a ring vessel, or water-vascular ring, that are connected by a frequently calcified vessel called the stone canal. 

Five radial water canals extend outward from the ring vessel and give rise to branches that end in the tube feet, which are in contact with the sea. The ring vessel in ophiuroids, asteroids, concentricycloids, and holothurians has bulbous cavities called Polian vesicles, which apparently maintain pressure in the system and hold reserve supplies of fluid; ophiuroids have four or more vesicles, asteroids five, holothurians from one to 50. Crinoids lack Polian vesicles, and echinoids have five structures known as either Polian vesicles or spongy bodies.

The madreporite, which is usually located externally, takes in water from outside the body; if internally located, as is the case in many holothurians, fluid is taken from the body cavity. 

The water or fluid passes from the madreporite to the ring vessel and along the radial canals to the tube feet. The tube feet are extended by contractions of localized muscle areas in the radial canals (ophiuroids) or by contractions of offshoots of the radial canals called ampullae (asteroids, concentricycloids, echinoids, and holothurians); the contractions force fluid into the tube feet, which then extend.

The structure of the system varies from group to group; asteroids frequently have more than one madreporite, and in holothurians, the madreporite is usually internal, hanging in the coelom. 

Radial canals may lie inward or outward from the skeleton. The tube feet may have well-developed suckers with great holding power, may taper to a point, or may be adapted for respiration, feeding, burrow building, mucus production, or sensory perception. 

Attachment of tube feet to hard substrates is achieved through a combination of suction and mucus production. The mucus contains adhesive and de-adhesive mucopolysaccharides. Respiratory tube feet have high oxygen uptake; they are usually located on parts of the body where water flow is unimpeded. 

Tube feet have been implicated in photoreception and chemoreception; the eyespots in the terminal tentacles of asteroids are the most conspicuous photoreceptors.

The tube feet of crinoids are arranged in clumps of three on the arms and on the pinnules. They secrete and spread a net of sticky mucus that traps small organisms. In ophiuroids the tube feet are used to gain a hold on a surface and to pass food to the mouth. 

The numerous tube feet of asteroids are used in locomotion; asteroids with suckered feet may use them to exert a continuous pull on the valves of shellfish (e.g., oysters, mussels) until muscles holding the valves tire and open slightly, allowing the asteroid to insert its stomach. 

In sea daisies the ring of tube feet is probably used for attachment to substrates. Holothurians use tube feet for the same purpose. Tentacles around the mouth of holothurians are modified tube feet used to capture food; tentacles used to capture plankton are branched and sticky, while those used to scoop mud and shovel it into the mouth have a simpler structure.

The tube feet of echinoids serve a variety of functions. The mouth of regular echinoids is surrounded by sensory tube feet, and tube feet farther from the mouth are used in locomotion. 

On the upper side of the body near the anus, the tube feet have respiratory and sensory functions. The tube feet of irregular echinoids, which burrow, are modified in various ways for feeding, burrow construction, and sensory and respiratory functions.

Female orgasms

Female orgasms A female orgasm can be a highly pleasurable experience during masturbation or sexual activity. While orgasms may ...